On the fault tolerance of a clustered single-electron neural network for differential enhancement
نویسندگان
چکیده
A clustered neural network, in which neuronal information is represented by a cluster (population of neurons), rather than a single neuron, is a possible solution to construct fault-tolerant singleelectron circuits. We designed single-electron circuits based on a clustered neural network that performs differential enhancement where differences between the cluster’s outputs receiving various magnitudes of inputs are enhanced after the processing. Simulation results showed that the degradation of the performance of the clustered single-electron neural network was significantly lower than that of a non-clustered network, which indicates that this approach is one possible way to construct fault-tolerant computing systems on nanodevices.
منابع مشابه
Stochastic resonance in an ensemble of single-electron neuromorphic devices and its application to competitive neural networks
Neuromorphic computing based on single-electron circuit technology is gaining prominence because of its massively increased computational efficiency and the increasing relevance of computer technology and nanotechnology [Likharev K, Mayr A, Muckra I, Türel Ö. CrossNets: High-performance neuromorphic architectures for CMOL circuits. Molec Electron III: Ann NY Acad Sci 1006;2003:146–63; Oya T, Sc...
متن کاملA generalized ABFT technique using a fault tolerant neural network
In this paper we first show that standard BP algorithm cannot yeild to a uniform information distribution over the neural network architecture. A measure of sensitivity is defined to evaluate fault tolerance of neural network and then we show that the sensitivity of a link is closely related to the amount of information passes through it. Based on this assumption, we prove that the distribu...
متن کاملDetection of Single and Dual Incipient Process Faults Using an Improved Artificial Neural Network
Changes in the physicochemical conditions of process unit, even under control, may lead to what are generically referred to as faults. The cognition of causes is very important, because the system can be diagnosed and fault tolerated. In this article, we discuss and propose an artificial neural network that can detect the incipient and gradual faults either individually or mutually. The mai...
متن کاملA Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملDesigning of a New Transformer Ground Differential Relay Based on Probabilistic Neural Network
Low- impedance transformer ground differential relay is a part of power transformer protection system that is employed for detecting the internal earth faults. This is a fast and sensitive relay, but during some external faults and inrush current conditions, may be exposed to maloperation due to current transformer (CT) saturation. In this paper, a new intelligent transformer ground differentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Electronic Express
دوره 2 شماره
صفحات -
تاریخ انتشار 2005